Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss.
نویسندگان
چکیده
Multisensory neurons in the dorsal cochlear nucleus (DCN) achieve their bimodal response properties [Shore (2005) Eur. J. Neurosci., 21, 3334-3348] by integrating auditory input via VIIIth nerve fibers with somatosensory input via the axons of cochlear nucleus granule cells [Shore et al. (2000) J. Comp. Neurol., 419, 271-285; Zhou & Shore (2004)J. Neurosci. Res., 78, 901-907]. A unique feature of multisensory neurons is their propensity for receiving cross-modal compensation following sensory deprivation. Thus, we investigated the possibility that reduction of VIIIth nerve input to the cochlear nucleus results in trigeminal system compensation for the loss of auditory inputs. Responses of DCN neurons to trigeminal and bimodal (trigeminal plus acoustic) stimulation were compared in normal and noise-damaged guinea pigs. The guinea pigs with noise-induced hearing loss had significantly lower thresholds, shorter latencies and durations, and increased amplitudes of response to trigeminal stimulation than normal animals. Noise-damaged animals also showed a greater proportion of inhibitory and a smaller proportion of excitatory responses compared with normal. The number of cells exhibiting bimodal integration, as well as the degree of integration, was enhanced after noise damage. In accordance with the greater proportion of inhibitory responses, bimodal integration was entirely suppressive in the noise-damaged animals with no indication of the bimodal enhancement observed in a sub-set of normal DCN neurons. These results suggest that projections from the trigeminal system to the cochlear nucleus are increased and/or redistributed after hearing loss. Furthermore, the finding that only neurons activated by trigeminal stimulation showed increased spontaneous rates after cochlear damage suggests that somatosensory neurons may play a role in the pathogenesis of tinnitus.
منابع مشابه
The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor on Noise- Induced Hearing Loss
Objective(s): Noise-induced hearing loss (NIHL) is the major cause of acquired hearing loss. Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, is a non- steroidal anti- inflammatory drug (NSAID) with known antioxidant and antineoplastic activity. Therefore, we monitored the extent of temporary noise- induced threshold shifts (TTS) and cochlear damage caused by high level 4- kHz noise exposure t...
متن کاملPreconditioning by the inhalation of pure oxygen protects rat’s cochlear function against noise-induced hearing loss
Background: Occupational noise-induced hearing loss (ONIHL) is a hearing disorder that affects workers all over the world. Preconditioning with several mild or less potent stressors will effectively prevent the development of noise-induced hearing loss. This study investigated the possible preventive effects of normobaric hyperoxia preconditioning on preventing the noise-induced hearing impairm...
متن کاملAuditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans.
The dorsal cochlear nucleus is the first site of multisensory convergence in mammalian auditory pathways. Principal output neurons, the fusiform cells, integrate auditory nerve inputs from the cochlea with somatosensory inputs from the head and neck. In previous work, we developed a guinea pig model of tinnitus induced by noise exposure and showed that the fusiform cells in these animals exhibi...
متن کاملBimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.
Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furtherm...
متن کاملStimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus.
Tinnitus and cochlear damage have been associated with changes in somatosensory-auditory integration and plasticity in the dorsal cochlear nucleus (DCN). Recently, we demonstrated in vivo that DCN bimodal plasticity is stimulus timing-dependent, with Hebbian and anti-Hebbian timing rules that reflect in vitro spike timing-dependent plasticity. In this in vivo study, we assessed the stimulus tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2008